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Laboratory seismic and electrical resistivity monitoring of 
supercritical CO2 flooding in sandstone cores 

Introduction

• Understanding of spatial distribution of CO2

—Where is it?
• Understanding of CO2 saturation in reservoir
—How much can we store?

Monitoring of CO2 geological storage requires:

To answer these and other questions:
• Laboratory measurements to define the 
relationship between CO2 in rock and its
geophysical signatures (“Rock Physics”)

• Interpretation of field geophysical 
measurements

• Integrate with reservoir modeling (for fluid 
movement)
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• A simplistic relationship—Gassmann Model (1951)

Introduction

Water Saturation
(1- scCO2 Saturation)

Vp drops rapidly near 
100% saturation

Slight increases in Vs 
due to density changes

Tuscaloosa, 125 oC, 31.7 MPa

P wave

S wave

sc-CO2 injection

• A simplistic relationship—Gassmann Model (1951)

Introduction

Water Saturation
(1- scCO2 Saturation)

Tuscaloosa, 125 oC, 31.7 MPa

P wave

S wave

sc-CO2 injection

(Azuma, et al., Energy Procedia, 2011)

Gassmann prediction

P-wave log results at Nagaoka site

Partchy saturation 
prediction
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Introduction

Cadoret et al.(1995)

Frequency and saturating phase geometry effect on P wave velocity
(Estaillades limestone)

drying

depressurization

X-ray CT of water filled sand (S~50%)

imbibition depressurization
(From Liu (2001) )

Split Hopkinson Resonant Bar (SHRB) Test

Rock/sediment core

Long sample

Displacement 
distributionShort sample

Composite 
sample

Metal rod (stainless steel, D=3.81cm, L=41 cm)

• Mass effect
• Length effect
(e.g. Tittmann, 1977)

Reduction of 
resonance frequency

Jacketed rock
/sediment core

Thermal 
sensor (RTD)

Piezoelectric source Accelerometers

Experiment is conducted within a gas (N2) confining 
cell

(Nakagawa, Rev. Sci. Instr., 2011)
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Split Hopkinson Resonant Bar (SHRB) Test

Rock/sediment core

Long sample

Displacement 
distributionShort sample

Composite 
sample

experimental

numerical

Acrylic core (D=1.5”, H=3.0”)

Resonance frequency
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(Nakagawa, Rev. Sci. Instr., 2011)

Electrial Resistivity Measurement

Log Vp

CO2 saturation (from neutron porosimetry)

CO2 saturation (%)

Resistivity

U-sonic Vp

Resistivity

(Xue and Watanebe, 
2008; Kim et al., 2011)

Nagaoka site

Berea

•Better sensitivity than seismic 
for high CO2 saturation
•For clean sand, basic empirical 
models (e.g. Archie’s Law) apply 
well
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Electrial Resistivity Measurement

• Perform core flood at 
reservoir conditions with 
scCO2

• Quantify resistivity versus 
scCO2 saturation
• Use CT scanning to quantify 
CO2 saturation distribution 
(patch geometry)
• Correlate to seismic 
measurements

Step I: Brine injection (Initially dry sample)
Step ll: sc-CO2 injection (Initially brine saturated)
Step lll: Brine re-injection
Step IV: brine removal (de-gassing) 

X-ray CT imaging
CO2 distribution & saturation

Resonant bar test
Seismic properties

Berea
Porosity: 21.0%
Permeability: 680 mD

T=35˚C
Pc=1,500 psi
Pp=1,000 psi
Brine: 5% KCl aq.

Cranfield (reservoir)
Porosity: 20.2%
Permeability: ~15.5 mD

T=65˚C
Pc=3,500 psi
Pp=2,800 psi
Brine: Syn. Reservoir 

brine

CO2 flooding experiment
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CO2 flooding experiment

Crosshole Tomography (~ 1 kHz)

Before injection

After injection

After injection

~250 m/s decrease

Example lll: CO2 monitoring

Tomography: 500-700 m/s change
Sonic log:       ~250 m/s      change

Sonic log of the injection interval 
by Schlumberger (~20 kHz)

(processing by Ajo-Franklin) (processing by Ajo-Franklin)
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CO2 flooding experiment

Berea Cranfield

0.22 mm/min0.8 mm /min
sc-CO2

saturation(%)

0%

65%

sc-CO2 injection experiment

Example lll: CO2 monitoring

CO2 flooding experiment

Berea Cranfield

sc-CO2

saturation(%)

0%

65%

sc-CO2 removal experiment

Example lll: CO2 monitoring

0.87 mm/hr2mm/min
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Brine saturation profiles along a high-perm Berea core 
(from x-ray CT)

Sc-CO2 injection CO2 dissolution
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CO2 flooding experiment

29%

19%

18%

15%

Brine saturation profiles along a medium-perm Cranfield core 
(from x-ray CT)

Sc-CO2 injection CO2 dissolution

4% 6%
10%13%

30%
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15%

20%

27%
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CO2 flooding experiment

Distance from brine inlet (mm)

38%

27%

26%

26% 22%

17%
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7.8%
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6.5%
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CO2 flooding experiment

SscCO2

0%

37.5%

2.7%

Extension (E) mode resonance Torsion (G) mode resonance

0 2,0001,000
Frequency (Hz)

0 2,0001,000
Frequency (Hz)

A
m

p
lit

u
de

 (
L

o
g 1

0
V

 )
 (

w
/o

ff
se

ts
)

Resonance curves (Cranfield sample)

Injection

Removal

Example lll: CO2 monitoring

Anisotropic Gassmann 
models
(from 100% brine sat.
+U sonic anisotropy)

CO2 flooding experiment

Berea Cranfield

Example lll: CO2 monitoring
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Gassmann models
(from 100% brine sat.
+U sonic anisotropy)

Gassmann models
(from 100% brine sat.
+U sonic anisotropy)

CO2 flooding experiment

Berea Cranfield

Example lll: CO2 monitoring

CO2 flooding experiment

Berea Cranfield

Example lll: CO2 monitoring

High perm, homogeneous Berea
Large attenuation changes
Large hysteresis

Low perm, heterogeneous Cranfield
Small attenuation changes
Generally large attenuation
Small hysteresis
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Planned experiments on cores….

sh

ss

sh

ss

sh

ss

sh

ss

• Baseline seismic and permeability measurements
-Both cap and reservoir rocks (~4 each)
-Stress sensitivity measurements for seismic
-Multiple cores (~3) from each unit

• Seismic and permeability anisotropy measurements

• sc-CO2 flooding experiments
-Reservoir rock only
-Seismic measurements (SHRB)
-Electrical resistivity measurements
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sc-CO2 injection test – White Model (f=1.7kHz)

Velocity (Berea) Attenuation (Berea)

a=50mm

25mm

10mm

5mm
2mm

a=50mm

25mm

10mm 5mm
2mm

Brine

sc-CO2

a

b

*Core radius.=19 mm 1/2Qp

CO2 flooding experiment
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CO2 flooding experiment

Cranfield

Lab

Cranfield

Lab

Cranfield

Lab

Cranfield:           125 oC, Pp= 4,600 psi (31.7 MPa), Pc=10,550 psi (72.8 MPa) 

Lab experiment: 65 oC,   Pp=2,800 psi (19.3 MPa), Pc=3,500 psi (24.1 MPa)

0.0984 GPa

0.0973 GPa

0.066 cP

0.074 cP

591 kg/m3

679 kg/m3

Density Viscosity Bulk moduluskg/m3 cP GPa

T (oC) T (oC) T (oC)

P
 (

M
P

a)

CO2 Properties

Special Thanks to…

 Steven Ferreira (Fabrication of SHRB setup)

 Andrew Mei (Preparation of rock cores and fab. of seismic source)

 Katherine Blair (Student; CT image processing)
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CO2 flooding experiment

Brine injection/drainage test (Berea)

CO2 flooding experiment

Pressure Difference
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Water
(kg/m3) Vp(m/s)   (cP)  K (GPa)
997.05 1496.7 0.890 2.234
988.80 1589.0 0.438 2.497
954.29 1584.0 0.230 2.394

Synthetic Cranfield Brine
MgCl2·2H2O    10.7 g/L
CaCl2·2H2O    35.0 g/L
NaCl2 107    g/L

At  room P (0.1 MPa)/T (25 oC)
Cranfield Brine: 1,086 kg/m3, 2.64 GPa
Water: 997 kg/m3, 2.23 GPa

CO2 flooding experiment

Fluid Parameters

T=25oC,   P=0.1 MPa   (15 psi)
T=65oC,   P=19.3 MPa (2,800 psi)
T=125oC, P=31.7 MPa (4,600 psi)

Cranfield core

61.6% Quartz
3.8% Kaolinite         Al2Si2O5(OH)4

11.06% Chlorite
14.53% Microcline    KAlSi3O8
1.68% Muscovite   

KAl2(AlSi3O10)(F,OH)2
3.82% Albite            NaAlSi3O8
0.43% Calcite
0.1%  Siderite
0.32% Halite
2.65% Anatase       TiO2


